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Towards Understanding Generalization in Deep Learning

Let the data probability space be (2, F, u;), where Z =X x ), x € X
are features and y € ) are labels. Let the training dataset be

S = (2i)1<jcp, ~ 12", which consists of n independent and identically
distributed (i.i.d.) data points. Let H := {h, : X =Y |w € RY} be a
hypothesis class parametrized by weights w.
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Background

Towards Understanding Generalization in Deep Learning

The main task of deep learning is to solve a population risk minimization
problem

where £ is the composition of the loss function £: Y x Y — R and
Uw,z) =Ll(w,(x,y)) = L(hw(x),y). In practice, since y1, is unknown, we
minimize the empirical risk

ﬁs(w) = % ZE (w, z;)

through a learning algorithm A. The worst-case generalization error over a
weight set YW € E is defined as

Gs(W) = sup (R(w) - Rs(w)).
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Background

Rethinking the Generalization Bounds

VC Generalization bounds:

d
where d is the VC dimension.

Classical tools from statistical learning theory (e.g., Rademacher
complexity, VC-dimension) suggest that highly over-parametrized models
should suffer from poor generalization in the absence of explicit
regularization.
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Background

Rethinking the Generalization Bounds

@ However, neural networks frequently generalize well even when
they possess enough capacity to memorize training data (the
enigma of generalization).

@ Due to factors such as data dependency and the implicit
regularization of optimization algorithms, not all parameters are

equally important or fully utilized during the actual learning process.

1

Generalization bounds with intrinsic dimension,
which indicates the “effective” geometric complexity of the model.
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Background

Fractal Dimension

Definition (Hausdorff dimension)

\.

For any s > 0 and § > 0, the s-dimensional Hausdorff outer measure
is defined as:

H5(X) := inf {Z(diam U)*: X C U Ui, diam(U;) < 5}
i=1 i=1

Then, the s-dimensional Hausdorff measure is given by:

HE(X) 1= lim H(X)

The Hausdorff dimension of X is defined as:

dimp(X) :=inf{s > 0: H*(X) =0} =sup{s > 0: H*(X) = oo}
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Preliminaries

Fractal Dimension

Definition (Upper-box dimension)

For each 6 > 0, let N¢(X) be the covering number of X, which is
the smallest number of sets of diameter at most § needed to cover
X. The upper box dimension is defined as:

log N9 (X
dimpox(X) = limsup <0g5()> )
6—0
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Preliminaries

Minimum Spanning Tree Dimension

A tree 7 on X is a connected undirected graph. We represent 7 by its set
of edges, which are denoted a — b (or equivalently b — a as the graph is
undirected). For an edge e of the form a — b, we define its length by

le| = d(a, b).

Define the cost of a tree by the sum of the length of its edges, i.e.,

EC(T) = [el.
eeT

Given a finite point set x € X as vertices, a minimum spanning tree
T(x) is defined as a tree with minimal cost.

Haiyu Zhang
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Preliminaries

Minimum Spanning Tree Dimension

Definition (Minimum spanning tree dimension)

Let x C X be a finite set, the a-weighted lifetime sum of x is

ES(x):= Y lel*

ecT(x)

with & > 0. Then the minimum spanning tree dimension is defined
as

dimusT(X) = inf {a 1 3C so that EMST(x) < C V finite x C X} :
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Preliminaries

Persistent Homology Dimension

Theorem (Mattila, 1995, Falconer, 2003)

Let X C R? be a set equipped with a Borel measure p, and suppose
that p is s-Ahlfors regular, that is, there exist constants ¢, > 0
and rp > 0 such that

ar’ < u(B(x,r)) < cr®, Vx esupp(u), Vre(0,r).
Then, the following dimensions of W coincide:

dimg(X) = dimpgex(X) = s.
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Preliminaries

Persistent Homology Dimension

Definition (Pesistent homology)

Given a sequence of filtered simplicial complex {X}, we can con-
struct a persistent chain complex Cx(Xy) by setting Ci(Xx) =
Cx(X4;) and the chain map x} : C/(Zx) = C/T}(Xk). For i < j, the
(i,j)-persistent homology group of C, denoted .HL'__”.(C), is defined
to be the image of the induced homomorphism h, 7 : Hk(Ci(Zx)) —

Hi(CL(ZA)).-
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Persistent Homology Dimension

Remark:
Note hy are linear maps on homology groups and for Vi < j,

W =H ol %0 0hl,

we get an N-indexed persistence module which fits into the diagram

Hi(CR(Zk) = Hi(Ci (k) = ...

We say that a persistent generator « in Hx(C/ (X)) is born at filtration
index i if v does not lie in img h;(_l; similarly, ~y is said to die at filtration
index j > i whenever j is the smallest number satisfying h{:l(y) = 0. By
convention, the death index of v equals +oc if no such j exists, i.e., if

hfl('y) is nonzero for all j > i. The persistence of y is defined to be
death minus birth, i.e., (j — /).
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Preliminaries

Persistent Homology Dimension

Definition (Vietoris-Rips complex)

Given a point cloud Z = {x,} € R", the Vietoris-Rips complex
R. is the abstract simplicial complex consisting of k-simplices whose
vertices are unordered (k -+ 1)-tuples of points {x,}& if and only if

d(zi,z) <e.
77\
O
N/
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Preliminaries

Persistent Homology Dimension

Definition (Persistent homology dimension)

For a finite set x C X, the weighted i*" homology lifetime sum is
defined as follows:

Ex)= > M

’YEPH,’(VR(X))

where PH;(VR(x)) is the i-dimensional persistence module of the
Vietoris-Rips complex on x and |/(7)| is the persistence of some

persistent generator .
The PH;-dimension of X is defined as

dimby, (X) := inf {a : E!(x) < C for some constant C > 0,
for all finite x C X} .

Haiyu Zhan, August 28, 2025 15 /40
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Preliminaries

The Equivalence of Three Definitions of Intrinsic
Dimension

Theorem (Kozma et al., 2006)

dim(,)pH(X) = dimMST(X) = dimBox(X)~
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Existing Results Fractal Structure of Weight Trajectories

© Existing Results
@ Fractal Structure of Weight Trajectories
o Generalization Bounds with Intrinsic Dimension
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Existing Results Fractal Structure of Weight Trajectories

Fractal Structure of Weight Trajectories

We model the SGD learning algorithm as a Feller process which is
expressed by the following SDE:

AW, = —VF(W,)dt + Z1(W,)dB; + Zo(W,)dLE(W,).

where ¥ 1,2, are d x d matrix-valued functions, B; denotes the Brownian
motion and L?(') denotes the state-dependent c-stable Lévy motion.

Let {Wt}icpo,1) be the solution of SDE, then the weight trajectories Ws
generated by the training set S is defined as

Ws ::{WERd:HtG[O,l],W:Wt}.
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Existing Results Fractal Structure of Weight Trajectories

Fractal Structure of Weight Trajectories

To illustrate relationship between the heavy-tail property of the learning
algorithm (approximated by a decomposable Feller process) and the fractal
structure of weight trajectories generated by the algorithm, we have the
following theorem.

Theorem (Simsekli et al., 2020)

Let {W(s)}5ezn be a family of Feller processes. Assume that for

each S5, W) s decomposable at a point ws with sub-symbol 9.
Then for the corresponding weight trajectories Ws, we have

im 9@l _ 0}.

. m
llell—o0  |1€]1A

dimg Ws < 85, where [g:=inf {)\ >0
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Existing Results Fractal Structure of Weight Trajectories

Fractal Structure of Weight Trajectories
Consider a simple example where the process Wt(s) is selected as a
d-dimensional a-stable Lévy process with d > 2, i.e.

aw® = are,

then it satisfies the assumptions of theorem with 55 = « for all S. In
particular, it holds that dimyg Ws = «. As shown in Figure 1, the fractal
structure of weight trajectories tends to be simpler if the stochastic
process exhibits a heavier tail.
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L7 (o = 1.00)
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05 ) -5000
-10000
| -15000

10 . =

0 1o 5000 - “5 10
4670 -10000 g
Time (t) Time (1) Time (t)

Figure: Weight trajectories of LY for a = 2.0, 1.5, and 1.0.
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Existing Results Generalization Bounds with Intrinsic Dimension

© Existing Results
@ Fractal Structure of Weight Trajectories
o Generalization Bounds with Intrinsic Dimension
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Existing Results Generalization Bounds with Intrinsic Dimension

Mathematical Set-up

Define the parameter space as RY, equipped with the Borel o-algebra
B(Rd). Let E denote the space of closed subsets of R?, equipped with the
Effros o-algebra €. We consider the random weight sets (or weight
trajectories) W € E and the data-dependent probability distribution on
(E, €). We define that a learning algorithm is a measurable map

A:Z" = P(E),

mapping S to a data-dependent probability measure ps € P(E), where
P(E) is the set of all probability measures defined on the measurable
space (E, €). We formalize the data-dependent probability distribution
as a Markov kernel
K:Z"x ¢ —[0,1]

such that:

© Foreach S € 2", A— K(S,A) is a probability measure on (E, €)

(i.e., ps).
@ Foreach Ac & S+ K(S,A) is a measurable function on (2", F").
August 28, 2025 22 /40



Existing Results Generalization Bounds with Intrinsic Dimension

PAC-Bayesian Theory on Random Sets

Consider the probability space (Z" x E, F®" @ &, P) with probability
distribution denoted by ;2" ® ps. To be more precise, for all A € F®" @ ¢

Pswns(A) = [ ps(OV: (S.) € Ag"(a5).

Definition (Priors and posteriors)

A prior, 7, is a data-independent probability distribution on (E, &). A
family of posteriors (ps)sczn is defined as a Markov kernel on E x Z".
We further require that the posteriors are absolutely continuous with
respect to the prior, i.e. ps < m, puS -almost surely.

Haiyu Zhang August 28, 2025 23 /40



Existing Results Generalization Bounds with Intrinsic Dimension

PAC-Bayesian Theory on Random Sets

Theorem (PAC-Bayesian bounds for random sets)

Let ® : E x Z" — R be a measurable function with respect to
¢ ® F®" Then we have for any ¢ € (0,1) :

Ps (Eyw~ps @V, S)

< KL (ps]|m) + 10g(1/€) + log EsEynr [¢*0¥)] ) > 1 ¢,
as well as the disintegrated bound
PS,WN/JS (q)(Wv S)

< log (‘Zf;(W)) + 10g(1/¢) + log EsEyprn [eWS)D >1-c.
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Existing Results Generalization Bounds with Intrinsic Dimension

Generalization Bounds with Intrinsic Dimensions

Assumption 1 [Bounded measurable loss]

The loss function ¢ : R x Z is measurable and bounded in [0, B], for
some constant B > 0.

Assumption 2 [Supremum measurability]

Both ¢ and (E, &) have enough regularity so that, for any coefficients
b,a1,...,a, € R, the following is E ®@ F®"-measurable:

W, S) — sup Z (ail (w, zj) — bR(w))

wew i—1

Assumption 3 [(g, L, d)-Lipschitz continuity]

(is (g, L, d)-Lipschitz in w on (RY, d), i.e.

|Ls(w) — Ls(w')|lq < Ln*9d(w, w') for Yw,w’ € R?, where the
data-dependent map Ls : RY — R" is defined by

Ls(w) = (U(w, z1),...,0w, z,)).
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Existing Results Generalization Bounds with Intrinsic Dimension

Generalization Bounds with Intrinsic Dimensions

Assumption 4 [Measurability of topological complexity]

The covering number, packing number and a-weighted lifetime sum are all
measurable with respect to F€" ® €.

Assumption 5 [Uniformly convergence in n] Given S, then for all € > 0,

sup ps. <| sup 28 IN-OV)])

neN* o<r<s  log(1/r)

—dimpex(W)| > e> — 0.
6—0
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Existing Results Generalization Bounds with Intrinsic Dimension

Generalization Bounds with Intrinsic Dimensions
Let

®\(W, S) = AGs(W) — 2ARads(W), A >0,
where Rads(W) is the Rademacher complexity W.

Suppose that Assumptions 1, 2, 3, 4 and 5 hold, then for any v > 0
and € > 0, there exists n, . s.t. for all n > n, ., we have

2 (dimpox (W) + €) (log(n))

2L
Psweps (GS(W) <+ 25\/

35 \/Ioo (s,W)+Iog(1/<)> S le(en,

2n
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Existing Results Generalization Bounds with Intrinsic Dimension

Generalization Bounds with Intrinsic Dimensions

Suppose that Assumptions 1, 2, 3, 4 and 5 hold, then for any v > 0
and € > 0, there exists n, . s.t. for all n > n, ., we have

2 (dimy, (W) + ) (log(n))

2L
Ps weps Gs(W) < " e 25\/

35 \/Ioo (s,W)+Iog(1/<)) S 1—c—n.

2n

These theorems show that the fractal dimension of the weight trajectories
acts as a “capacity metric” and the generalization error is therefore
directly linked to this metric.
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Existing Results Generalization Bounds with Intrinsic Dimension

Generalization Bounds with Intrinsic Dimensions

Remark 1:
We observe that the upper bound of the generalization error can be

decomposed as
Complexity Term + Data Dependence Term + Confidence Term.

Here, the Complexity Term primarily quantifies the fitting capacity of the
hypothesis class, while the Data Dependence Term mainly measures the

degree to which Ws depends on S. Together, these two terms assess the
overfitting of the hypothesis class to the data from different perspectives.
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Existing Results Generalization Bounds with Intrinsic Dimension

Generalization Bounds with Intrinsic Dimensions

Remark 2:
We know that if the weight trajectories is regular enough, heavier-tails
imply less generalization error. That is

heavier-tailed noise (smaller ) = dimpx(Ws) | = Gs(W) | .

Intuitively, heavier-tailed stochastic processes in SGD, such as a-stable
Lévy processes with small «, promote better generalization by enabling
broader exploration of the loss landscape. The occasional large updates
help escape sharp minima and bias the optimization toward flatter regions,
which are known to generalize better.
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Research Directions and Plans

Motivation

There are limitations in existing results ...

@ These bounds are implicit, in the sense that they cannot be related to
algorithm hyperparameters, problem geometry, or data, which causes
a disparity between theory and practice and provides only limited
insights for practical application.

@ The correlation observed between intrinsic dimension and
generalization gap is significantly influenced by hyperparameter
values, especially the learning rates.

@ The term in the generalization bounds involving mutual information
between the training data and the optimization trajectory is less
explored and the relationship between the complexity term and data
dependence term remains unclear.
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Research Directions and Plans

Fractal Structure of Invariant Measures

We follow the work [Camuto et al., 2021].
Consider the stochastic gradient descent(SGD) algotithm as an random
iterative function system (IFS):

Wi = wik_1 — NV Rk (Wk—1),

where VR, (w) := VRg, (w) := (1/b) Y _ Vl(w,z).
i€Qy

A simple example:

Consider a 1 -dimensional quadratic problem with loss function

l(w,z1) = W72 and ¢ (w, ) = % Let Qi C {1,2} be uniformly random
with batch-size b = 1 and the step-size n = % Then the invariant set
under the iteration is the famous “middle-third Cantor set” and the
stationary distribution is the Cantor distribution.
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search Directions and Plans

Research plan (theoretical part)

@ Explore the generalization bounds with “effective” hypothesis
complexity the persistent homology dimension of invariant measure
obtained by an IFS wy ~ p defined in [Adams et al, 2019]:

dimpby () = Ci!nf0 {d | 3 constant C(i,u,d) s.t.
>

lim P [L’ (X,) < Cn(d_l)/d} - 1},

n—oo

where X, C X be a random sample of n points from X distributed
according to u, and let L' (X,,) be the sum of the lengths of the
intervals in the i-dimensional persistent homology for X,.
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Research Directions and Plans

Research plan (theoretical part)

@ Reconstructing generalization bounds with hypothesis stability. My
preliminary findings indicate that the positive correlation between
generalization gap and intrinsic dimension depends strongly on
hyperparameters such as the learning rate, suggesting potential
interactions with algorithmic stability. We aim to establish a
connection between the information-theoretic quantities between the
loss and the data and the algorithmic stability proposed by [Bousquet
and Elisseeff, 2002], in order to derive generalization.
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Research Directions and Plans

Research plan (theoretical part)

o Explicitly establish the relationship between the PH dimension, the
hyperparameters of the stochastic optimization algorithm and the
generalization gap. By modeling stochastic gradient descent (SGD)
as an iterative random function system or a stochastic process, we
can investigate how the persistent homology (PH) dimension of the
resulting weight trajectory or invariant measure depends on
algorithmic hyperparameters such as learning rate or optimizer type.
This approach aims to disentangle the interplay between intrinsic
dimension, the geometric structure of the loss landscape (e.g.,
flatness of generalizing minima), and the implicit regularization
induced by optimization dynamics. Intuitively, the intrinsic dimension
should scale with the learning rate, but whether this reflects an
implicit regularization mechanism that enhances generalization
remains an open problem.
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Research Directions and Plans

Research plan (experimental part)

© Empirically support the theoretical results.
@ Other questions:

» What is the appropriate ambient dimension for a given intrinsic
dimension?

» How to design a regularizer (with respect to PH dimension) to the
optimization problem?
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search Directions and Plans

Research plan (experimental part)

We investigate the Grokking phenomenon by training a 3-layer MLP on
a subset of the MNIST dataset consisting of 1000 samples and test on the
whole dataset (10000 samples). The model architecture includes two
hidden layers with ReLU activations and an output layer with 10 classes.
The network is trained using the AdamW optimizer with a mean squared
error (MSE) loss over 500,000 steps.
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h Directions and Plans

Research plan (experimental part)

Accuracy over Time
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Figure: The Evolution of Intrinsic Dimension during the Grokking Phenomenon
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